
CS 61B Sorting
Spring 2025 Discussion 11: April 14, 2025

1 All Sorts Of Sorts
Show the steps taken by each sort on the following unordered list:

0, 4, 2, 7, 6, 1, 3, 5

(a) Insertion sort
Solution:

0 | 4 2 7 6 1 3 5
0 4 | 2 7 6 1 3 5
0 2 4 | 7 6 1 3 5
0 2 4 7 | 6 1 3 5
0 2 4 6 7 | 1 3 5
0 1 2 4 6 7 | 3 5
0 1 2 3 4 6 7 | 5
0 1 2 3 4 5 6 7 |

(b) Selection sort
Solution:

0 | 4 2 7 6 1 3 5
0 1 | 2 7 6 4 3 5
0 1 2 | 7 6 4 3 5
0 1 2 3 | 6 4 7 5
0 1 2 3 4 | 6 7 5
0 1 2 3 4 5 | 7 6
0 1 2 3 4 5 6 | 7
0 1 2 3 4 5 6 7 |

(c) Merge sort

Solution:

0 4 2 7 6 1 3 5
0 4 2 7 6 1 3 5
0 4 2 7 6 1 3 5
0 4 2 7 6 1 3 5
0 4 2 7 1 6 3 5
0 2 4 7 1 3 5 6
0 1 2 3 4 5 6 7

(d) Use heapsort to sort the following array (hint: draw out the heap).
Draw out the array at each step: 0, 6, 2, 7, 4

2 Sorting

Solution: First, we need to heapify our array. We convert the current array to a max heap:

0

6 2

7 4

Recall that to heapify our array, we bubble down in reverse level order (bottom to top, right to left). This
means we start by bubbling down 4, which in this case gives us the same heap structure. Bubbling down
7, and then 2, leaves the heap unchanged as well. Bubbling down 6 (swapping 6 and 7) then gives us the
following:

0

7 2

6 4

Bubbling down 0 gives us our final heap:

7

6 2

0 4

Note that as we heapify, we also modify the underlying array representation as well. This means that our
final array looks like [7, 6, 2, 0, 4]. We then begin popping off the max value from the heap, placing it at
the back of the array. Note that our underlying array representation doesn’t consider the popped value as
part of the heap any more. We start by popping off 7 and bubbling down:

7

6 2

0 4

4

6 2

0

6

4 2

0

Our array now looks like this: [6, 4, 2, 0, 7], where the bolded section is considered sorted and not part
of the heap. We the continue by popping off 6:

6

4 2

0

0

4 2

4

0 2

Sorting 3

and the array looks like [4, 0, 2, 6, 7]. We then pop off 4:

4

0 2

2

0

and our array looks like [2, 0, 4, 6, 7]. In a similar fashion, we pop off 2 and 0 from our heap, resulting
in [0, 2, 4, 6, 7] and finally our sorted array: [0, 2, 4, 6, 7]

4 Sorting

2 Ethan Has Been Waiting For This
Ethan, an extremely tall 61B tutor, is trying to sort the TAs by height so he can snap a photo. Can you help
him out?

public class TA {
 private String name;
 private int height;
 public TA(String name, int height) {
 this.name = name;
 this.height = height;
 }
}

(a) Implement a TAComparator below such that it compares two TAs’ height. Recall that a Comparator’s
compare method returns a negative number when o1 is ”less than” o2, positive number when o1 is “greater
than” o2, and 0 when they are the same.

public class TAComparator implements Comparator<__> {
 @Override
 public int compare(____ o1, ____ o2) {

 }
}

Sorting 5

Solution:

public class TAComparator implements Comparator<TA> {
 @Override
 public int compare(TA o1, TA o2) {
 if (o1.height < o2.height) {
 return -1;
 } else if (o1.height > o2.height) {
 return 1;
 }
 return 0;
 }
 }

 Alternatively, you could also just do:

 @Override
 public int compare(TA o1, TA o2) {
 return o1.height - o2.height;
 }

 or

 @Override
 public int compare(TA o1, TA o2) {
 return Integer.compare(o1.height, o2.height);
 }
}

(b) Anniyat suggests that we use Quicksort with our comparator. Given the following list of TAs, who would
make the worst pivot? What about the best pivot?

TA anniyat = new TA("Anniyat", 70000);
TA aditya = new TA("Aditya", 1);
TA elana = new TA("Elana", 5);
TA sree = new TA("Sree", 7);
TA kevin = new TA("Kevin", 25);
TA elaine = new TA("Elaine", 9);
TA daniel = new TA("Daniel", 4);
TA teresa = new TA("Teresa", 8);
TA diego = new TA("Diego", 8);

Solution: Generally speaking, the worst pivot for Quicksort on a collection is that collection’s minimum
and maximum values, because the sublists would be partitioned very poorly. The worst pivots in the list
are therefore Anniyat (maximum height) and Aditya (minimum height). On the other hand, the best pivot
for Quicksort on a collection is that collection’s median value. We see that the median height is 8 so either
Teresa or Diego would make good pivots.

6 Sorting

(c) Diego points out that even though he got in line after Teresa, he ended up in front of Teresa in the
sorted list produced by Quicksort (which he doesn’t like because that makes it seem like he’s shorter than
Teresa)! How might we ensure that Diego ends up behind Teresa?

Solution: If we want to preserve ordering of same-valued elements in the original collection when sorted,
we should use a stable sort like insertion sort or merge sort! Technically speaking, there is a stable Quicksort
possible, but we generally don’t use that version.

(d) Our TAs have just been sorted by height, but suddenly Vika and Wilson come running in late! Which
sort will do the most minimal work to get them in their correct spots, and what is the additional runtime
it will take (ie. not including the runtime for sorting all the other TAs first)?

Solution: Insertion sort: it is the most efficient on an already-sorted or nearly-sorted list (ie. on a completely
sorted list, it will make a linear pass and terminate without any swaps, as opposed to something like
Quicksort, merge sort, or heapsort, which would indiscriminately try and sort the list without checking if
it is already sorted). We can get everyone in sorted order by tacking on Vika and Wilson to the end of the
already-sorted list of TAs, and running insertion sort starting with them (instead of the beginning of the
list). At worst, we’d have to make two linear passes (ie. Vika and Wilson are the two shortest TAs), so our
overall runtime to get everyone sorted again would be Θ(N).

Sorting 7

3 Zero One Two-Step
(a) Given an array that only contains 0’s, 1’s and 2’s, write an algorithm to sort it in linear time without

creating a new array. You may want to use the provided helper method, swap. Hint: Consider how Hoare
partitioning rearranges elements in an array.

public static void specialSort(int[] arr) {
 int front = 0;
 int back = arr.length - 1;
 int curr = 0;
 while (______________________________) {
 if (arr[curr] < 1) {
 _____________________________;
 _____________________________;
 _____________________________;
 } else if (arr[curr] > 1) {
 _____________________________;
 _____________________________;
 } else {
 _____________________________;
 }
 }
 }
}

private static void swap(int[] arr, int i, int j) {
 int temp = arr[i];
 arr[i] = arr[j];
 arr[j] = temp;
}

Solution:

while (curr <= back) {
 if (arr[curr] < 1) {
 swap(arr, curr, front);
 front += 1;
 curr += 1;
 } else if (arr[curr] > 1) {
 swap(arr, curr, back);
 back -= 1;
 } else {
 curr += 1;
 }
}

(b) We just wrote a linear time sort, how cool! Why can’t we always use this sort, even though it has better
runtime than Mergesort or Quicksort?

8 Sorting

Solution: While our algorithm is super cool, we were only able to write it because we knew there were
exactly 3 possible values that could be in our array! For the general case, when the collections we’re sorting
have much more variety, we can’t make these kinds of guarantees.

(c) The sort we wrote above is also ”in place”. What does it mean to sort ”in place”, and why would we
want this?

Solution: In general, we consider a sorting operation to be done in place if it does not require significant
extra space. ”Significant extra space” is often defined as linear or greater, with respect to the number of
elements we are sorting. For example, if our sorting algorithm requires making a whole new array and
copying elements over to it, then it is NOT in place because we had to allocate significant Sorting 7 space
for this new array. Some algorithms that can be implemented in place are selection sort, insertion sort, and
heap sort. Mergesort technically can be implemented in place, but it’s rather complex. Doing operations
in place is beneficial because we typically want to use as little memory/computer resources as possible.
Though in this class, we focus on time efficiency, space efficiency is important too in the real world!

	All Sorts Of Sorts
	Ethan Has Been Waiting For This
	Zero One Two-Step

