
CS 61B Iterators, Asymptotics
Spring 2025 Discussion 04: February 17, 2025

1 OHQueue
Meshan is designing the new 61B Office Hours Queue. The code below for OHRequest represents a single
request. It has a reference to the next request. description and name contain the description of the bug and
name of the person on the queue, and isSetup marks the ticket as being a setup issue or not.

public class OHRequest {
 public String description;
 public String name;
 public boolean isSetup;
 public OHRequest next;

 public OHRequest(String description, String name, boolean isSetup, OHRequest next) {
 this.description = description;
 this.name = name;
 this.isSetup = isSetup;
 this.next = next;
 }
}

2 Iterators, Asymptotics

(a) Create a class OHIterator that implements an Iterator over OHRequests and only returns requests with
good descriptions (using the isGood function). Our OHIterator’s constructor takes in an OHRequest that
represents the first OHRequest on the queue. If we run out of office hour requests, we should throw a
NoSuchElementException when our iterator tries to get another request, like so:

 throw new NoSuchElementException();

public class OHIterator __ {
 private OHRequest curr;

 public OHIterator(OHRequest request) {

 __;

 }

 public static boolean isGood(String description) { return description.length() >= 5; }

 @Override
 __________________ __________________ _______________________________ {

 while (__) {

 ____________________________________;

 }

 ____________________________________;

 }

 @Override
 __________________ __________________ _______________________________ {

 if (____________________________________) {

 throw __________ ___;

 }

 ____________________________________;

 ____________________________________;

 ____________________________________;

 }
}

Iterators, Asymptotics 3

Solution:

public class OHIterator implements Iterator<OHRequest> {
 private OHRequest curr;

 public OHIterator(OHRequest request) {
 curr = request;
 }

 public static boolean isGood(String description) { return description.length() >= 5; }

 @Override
 public boolean hasNext() {
 while (curr != null && !isGood(curr.description)) {
 curr = curr.next;
 }
 return curr != null;
 }

 @Override
 public OHRequest next() {
 if (!hasNext()) {
 throw new NoSuchElementException();
 }
 OHRequest temp = curr;
 curr = curr.next;
 return temp;
 }
}

Explanation: The OHRequest object queue passed into OHIterator’s constructor represents the first
OHRequest on the queue. Initializing curr to queue in the constructor allows our OHIterator to start at this
first request. Since OHIterator implements an Iterator over OHRequests, we must provide implementations
for the interface methods hasNext() and next(). The hasNext() method handles checking whether there
are more OHRequests. However, we only want requests with good (as defined by isGood) descriptions, so
we must check the descriptions of each OHRequest and skip over the ones with bad descriptions before
determining whether there are OHRequests left.

(b) Define a class OHQueue below: we want our OHQueue to be Iterable so that we can process OHRequest
objects with good descriptions. Our constructor takes in the first OHRequest object on the queue.

public class OHQueue ___ {
 private OHRequest request;
 public OHQueue(OHRequest request) {

 __;
 }

 @Override

4 Iterators, Asymptotics

 __________________ __________________ _______________________________ {

 __;
 }
}

Solution:

public class OHQueue implements Iterable<OHRequest> {
 private OHRequest request;

 public OHQueue(OHRequest request) {
 this.request = request;
 }

 @Override
 public Iterator<OHRequest> iterator() {
 return new OHIterator(request);
 }
}

Explanation: If we want our OHQueue to be Iterable, OHQueue has to implement the interface Iterable.
A condition of this is implementing the methods of the interface (which in the case of Iterable, is the
iterator() method). As our OHQueue processes OHRequest objects, iterator() in OHQueue should return
an OHIterator over OHRequest objects.

(c) Suppose we notice a bug in our office hours system: if a ticket’s description contains the words “thank u”, it
is put on the queue twice. To combat this, we’d like to adjust our implementation of OHIterator’s next().

If the current item’s description contains the words “thank u”, it should skip the next item on the queue,
because we know the next item is an accidental duplicate from our buggy system. As an example, if there
were 4 OHRequest objects on the queue with descriptions ["thank u", "thank u", "im bored", "help
me"], calls to next() should return the 0th, 2nd, and 3rd OHRequest objects on the queue.

To check if a String s contains the substring “thank u”, you can use: s.contains("thank u")

@Override
______________ ____________ ______________ {

 if (____________________________________) {

 throw __________ ___;

 }
 ____________________________________;

 ____________________________________;

 if (__) {

 ______________________;

Iterators, Asymptotics 5

 }
 return ______________________;
}

Solution:

@Override
public OHRequest next() {
 if (!hasNext()) {
 throw new NoSuchElementException();
 }
 OHRequest temp = curr;
 curr = curr.next;
 if (temp.description.contains("thank u")) {
 curr = curr.next;
 }
 return temp;
}

(d) Now assume the OHQueue uses the modified OHIterator as its iterator. Fill in the blanks to print only
the names of tickets from the queue beginning at s1 with good descriptions, skipping over duplicate
descriptions that contain “thank u”. What would be printed after we run the main method?

public static void main(String[] args) {
 OHRequest s5 = new OHRequest("I deleted all of my files, thank u", "Elana", true, null);
 OHRequest s4 = new OHRequest("conceptual: what is Java", "Mihir", false, s5);
 OHRequest s3 = new OHRequest("git: I never did lab 1", "Kevin", true, s4);
 OHRequest s2 = new OHRequest("help", "Ethan", false, s3);
 OHRequest s1 = new OHRequest("no I haven't tried the debugger", "Ashley", false, s2);

 OHQueue q = _______________________________________;

 for (__) {

 __;
 }
}

6 Iterators, Asymptotics

Solution:

public static void main(String[] args) {
 OHRequest s5 = new OHRequest("I deleted all of my files, thank u", "Elana", true, null);
 OHRequest s4 = new OHRequest("conceptual: what is Java", "Mihir", false, s5);
 OHRequest s3 = new OHRequest("git: I never did lab 1", "Kevin", true, s4);
 OHRequest s2 = new OHRequest("help", "Ethan", false, s3);
 OHRequest s1 = new OHRequest("no I haven't tried the debugger", "Ashley", false, s2);

 OHQueue q = new OHQueue(s1);
 for (OHRequest r: q) {
 System.out.println(r.name);
 }
}

Overall, we print:

Ashley
Kevin
Mihir
Elana

Iterators, Asymptotics 7

2 Asymptotics
(a) Say we have a function findMax that iterates through an unsorted int array one time and returns the

maximum element found in that array. Give the tightest lower and upper bounds (Ω(⋅) and 𝑂(⋅)) of
findMax in terms of N, the length of the array. Is it possible to define a Θ(⋅) bound for findMax?

Solution: Lower bound: Ω(𝑁), Upper bound: 𝑂(𝑁)

Because the array is unsorted, we don’t know where the max will be, so we have to iterate through the
entire array to ensure that we find the true max. Therefore, we know that we can never go faster than
linear time with respect to the length of the array. Since the function is both lower and upper bounded by
𝑁 , we can say that the function is theta-bounded by 𝑁 as well (Θ(𝑁)).

(b) Give the worst case and best case runtime in terms of 𝑀 and 𝑁 . Assume ping runs in Θ(1) and returns
an int.

for (int i = N; i > 0; i--) {
 for (int j = 0; j <= M; j++) {
 if (ping(i, j) > 64) { break; }
 }
}

Solution: Worst: Θ(𝑀𝑁), Best: Θ(𝑁) We repeat the outer loop 𝑁 times, no matter what. For the inner
loop, the amount of times we repeat it depends on the result of ping. In the best case, it returns true
immediately, such that we’ll only ever look at the inner loop once and then break the inner loop. In the worst
case, ping is always false and we complete the inner loop M times for every value of N in the outer loop.

(c) Below we have a function that returns true if every int has a duplicate in the array, and false if there
is any unique int in the array. Assume sort(array) is in Θ(𝑁 log𝑁) and returns array sorted.

public static boolean noUniques(int[] array) {
 array = sort(array);
 int N = array.length;
 for (int i = 0; i < N; i += 1) {
 boolean hasDuplicate = false;
 for (int j = 0; j < N; j += 1) {
 if (i != j && array[i] == array[j]) {
 hasDuplicate = true;
 }
 }
 if (!hasDuplicate) return false;
 }
 return true;
}

Give the worst case and best case runtime where 𝑁 = array.length.

8 Iterators, Asymptotics

Notice that we call sort at the beginning of the function, which we are told runs in Θ(𝑁 log𝑁).

First, we consider the best case. We notice that if hasDuplicate is false after the inner loop (i.e. !
hasDuplicate has truth value true) we can exit the for loop early via the return statement on line
11. Thus, the best case is when we never set hasDuplicate to be true during the first time we run the
inner loop. In this case, we can return after only looping through the array once, giving us Θ(𝑁 log𝑁 +
𝑁) = Θ(𝑁 log𝑁).

For the worst case, we notice that if hasDuplicate is always set to true by the inner loop, we never return
on line 11. Thus, we consider the worst case where hasDuplicate is always set to true in every loop,
forcing us to have to loop fully through both the inner and outer loop. One such input is an array of all
the same integer! Since we have to fully loop through both loops, our worst-case runtime is Θ(𝑁 log𝑁 +
𝑁2) = Θ(𝑁2).

	OHQueue
	Asymptotics

