
CS 61B Inheritance, Comparators, Generic Functions
Spring 2025 Discussion 03: February 10, 2025

1 It’s a Bird! It’s a Plane! It’s a CatBus!
(a) On a research expedition studying air traffic, we discovered a new species: the Flying Interfacing

CatBus, which acts like a vehicle and has the ability to make noise (safety is important!).

Given the Vehicle and Noisemaker interfaces, fill out the CatBus class so that CatBuses can rev their
engines and make noise at other CatBuses with a CatBus-specific sound.

interface Vehicle {
 public void revEngine();
}

interface Noisemaker {
 public void makeNoise();
}

public class CatBus ______________________ ________________, ________________ {
 @Override
 ___________ __________ _______________ { /* CatBus revs engine, code not shown */ }

 @Override
 ___________ __________ _______________ { /* CatBus makes noise, code not shown */ }

 /** Allows CatBus to make noise at other CatBuses. */
 public void conversation(CatBus target) {
 makeNoise();
 target.makeNoise();
 }
}

(b) It’s a lovely morning in the skies and we’ve encountered a horrible Goose, which also implements
Noisemaker (it has a knife in its beak!). Modify the conversation method signature so that CatBuses
can makeNoise at both CatBus and Goose objects while only having one argument, target.

2 Inheritance, Comparators, Generic Functions

2 Default
(a) Suppose we have a MyQueue interface that we want to implement. We want to add two default methods

to the interface: clear, remove and max. Fill in these methods in the code below.

public interface MyQueue<E> {
 void enqueue(E element); // adds an element to the end of the queue
 E dequeue(); // removes and returns the front element of the queue
 boolean isEmpty(); // returns true if the queue is empty
 int size(); // returns the number of elements in the queue

 // removes all items from the queue
 default void clear() {

 }

 // removes all items equal to item from the queue
 // the remaining items should be in the same order as they were before
 default void remove(E item) {

 }

 // returns the maximum element in the queue according to the comparator
 // the items in the queue should be in the same order as they were before
 // assume the queue is not empty
 default E max(Comparator<E> c) {

 }
}

Inheritance, Comparators, Generic Functions 3

3 Inheritance Syntax
Suppose we have the classes below:

public class ComparatorTester {
 public static void main(String[] args) {
 String[] strings = new String[] {"horse", "cat", "dogs"};
 System.out.println(Maximizer.max(strings, new LengthComparator()));
 }
}

public class LengthComparator implements Comparator<String> {
 @Override
 public int compare(String a, String b) {
 return a.length() - b.length();
 }
}

public class Maximizer {
 /**
 * Returns the maximum element in items, according to the given Comparator.
 */
 public static <T> T max(T[] items, Comparator<T> c) {
 ...
 int cmp = c.compare(items[i], items[maxDex]);
 ...
 }
}

(a) Suppose we omit the compare method from LengthComparator. Which of the following will fail to
compile?

ComparatorTester.java

LengthComparator.java

Maximizer.java

Comparator.java

(b) Suppose we omit implements Comparator<String> in LengthComparator. Which file will fail to
compile?

ComparatorTester.java

LengthComparator.java

Maximizer.java

Comparator.java

4 Inheritance, Comparators, Generic Functions

(c) Suppose we removed @Override. What are the implications?

(d) Suppose we changed where the type parameter appears so that the code in Maximizer looks like:

public class Maximizer<T> {
 public T max(T[] items, Comparator<T> c) {
 ...

What would change about the way we use Maximizer?

(e) Suppose we changed the method signature for max to read public static String max(String[]
items, Comparator<String> c). Would the code shown still work?

	It's a Bird! It's a Plane! It's a CatBus!
	Default
	Inheritance Syntax

