
CS 61B Sorting
Spring 2025 Exam-Level 11: April 14, 2025

1 Identifying Sorts
Below you will find intermediate steps in performing various sorting algorithms on the same input list. The
steps do not necessarily represent consecutive steps in the algorithm (that is, many steps are missing), but
they are in the correct sequence. For each of them, select the algorithm it illustrates from among the following
choices: insertion sort, selection sort, mergesort, quicksort (first element of sequence as pivot), and heapsort.
When we split an odd length array in half in mergesort, assume the larger half is on the right.

Input list: 1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

(a) 1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000
1429, 3291, 192, 1337, 7683, 594, 4242, 9001, 129, 1000, 4392
192, 1337, 1429, 3291, 7683, 129, 594, 1000, 4242, 4392, 9001
Solution: Mergesort. One identifying feature of mergesort is that the left and right halves do not interact
with each other until the very end. Further, note that the first line has had several steps applied to it, and
yet is completely unchanged. This is reflective of how mergesort at first simply partitions the array without
sorting anything.

(b) 1337, 192, 594, 129, 1000, 1429, 3291, 7683, 4242, 9001, 4392
192, 594, 129, 1000, 1337, 1429, 3291, 7683, 4242, 9001, 4392
129, 192, 594, 1000, 1337, 1429, 3291, 4242, 4392, 7683, 9001
Solution: Quicksort. First item was chosen as pivot, so the first pivot is 1429, meaning the first iteration
should break up the array into something like | < 1429 | = 1429 | > 1429

(c) 1337, 1429, 3291, 7683, 192, 594, 4242, 9001, 4392, 129, 1000
192, 1337, 1429, 3291, 7683, 594, 4242, 9001, 4392, 129, 1000
192, 594, 1337, 1429, 3291, 7683, 4242, 9001, 4392, 129, 1000
Solution: Insertion Sort. Insertion sort starts at the front, and for each item, move to the front as far as
possible. These are the first few iterations of insertion sort so the right side is left unchanged

(d) 1429, 3291, 7683, 9001, 1000, 594, 4242, 1337, 4392, 129, 192
7683, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 129, 9001
129, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 7683, 9001
Solution: Heapsort. This one’s a bit more tricky. Basically what’s happening is that the second line is in
the middle of heapifying this list into a maxheap. Then we continually remove the max and place it at
the end.

In all these cases, the final step of the algorithm will be this: 129, 192, 594, 1000, 1337, 1429, 3291, 4242, 4392,
7683, 9001
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2 Conceptual Sorts
Answer the following questions regarding various sorting algorithms that we’ve discussed in class. If the question
is T/F and the statement is true, provide an explanation. If the statement is false, provide a counterexample.

(a) We have a system running insertion sort and we find that it’s completing faster than expected. What
could we conclude about the input to the sorting algorithm?

Solution: The array is nearly sorted. Note that the time complexity of insertion sort is Θ(𝑁 +𝐾), where
𝐾 is the number of inversions. When the number of inversions is small, insertion sort runs fast.

(b) Give a 5 integer array that elicits the worst case runtime for insertion sort.

Solution: A simple example is: 5 4 3 2 1. Any 5 integer array in descending order would work.

(c) (T/F) Heapsort is stable.

Solution: False, stability for sorting algorithms mean that if two elements in the list are defined to be
equal, then they will retain their relative ordering after the sort is complete. Heap operations may mess up
the relative ordering of equal items and thus is not stable. As a concrete example, consider the max heap:
21 20a 20b 12 11 8 7

(d) Compare mergesort and quicksort in terms of (1) runtime, (2) stability, and (3) memory efficiency for
sorting linked lists.

Solution:

(1) Mergesort has Θ(𝑁 log𝑁)worst case runtime versus quicksort’s Θ(𝑁2).
(2) Mergesort is stable, whereas quicksort typically isn’t.
(3) Mergesort is also more memory efficient for sorting a linked list, because it is not necessary to create
the auxiliary array to store the intermediate results. One can just modify the pointers of the linked list
nodes to “snakeweave” the nodes in order.

(e) You will be given an answer bank, each item of which may be used multiple times. You may not need to
use every answer, and each statement may have more than one answer.

(A) Quicksort (in-place using Hoare partitioning and choose the leftmost item as the pivot)
(B) Merge Sort
(C) Selection Sort
(D) Insertion Sort
(E) Heapsort
(F) None of the above

For each of the statements below, list all letters that apply. Each option may be used multiple times or
not at all. Note that all answers refer to the entire sorting process, not a single step of the sorting process,
and assume that 𝑁  indicates the number of elements being sorted.

______________________ Bounded by Ω(𝑁 log𝑁) lower bound.

Solution: A, B, C. All these sorts take at least Ω(𝑁 log𝑁). In a sorted list, insertion sort has linear
runtime. Similarly, heapsort has linear runtime on a heap of equal items.

______________________ Worst case runtime that is asymptotically better than quicksort’s worst case
runtime.
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Solution: B, E. Quicksort has a worst case runtime of 𝑂(𝑁2), while both merge sort and heapsort have a
worst-case runtime of 𝑂(𝑁 log𝑁).

______________________ In the worst case, performs Θ(𝑁) pairwise swaps of elements.

Solution: C. When thinking of pairwise swaps, both selection and insertion sort come to mind. Selection
sort does at most Θ(𝑁) swaps, while it is possible for insertion sort to need Θ(𝑁2) swaps (for example, a
reverse sorted array).

______________________ Never compares the same two elements twice.

Solution: A, B, D. Notice for quicksort and merge sort that once we do a comparison between two elements
(the pivot for quicksort and elements within a recursive subarray in merge sort), we will never compare
those two elements again. For example, we won’t compare the pivot against any other element again, and
a sorted subarray will never have elements within it compared against one another. Insertion sort is much
the same, as we bubble down elements into their respective places, comparing only against elements to the
“left” of them.

Selection sort can compare the same items twice, since it requires finding the minimum on each iteration.
Heapsort may require multiple comparisons of the same items: during heapification and during bubbling
down after a removal.

______________________ Runs in best case Θ(log𝑁) time for certain inputs.

Solution: F. The best case runtime for a sorting algorithm cannot be faster than Θ(𝑁). This is because
at the very least, we need to check if all elements are sorted, and since there are 𝑁  elements, we can’t have
an algorithm that sorts faster than Θ(𝑁).
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3 Bears and Beds
In this problem, we will see how we can sort “pairs” of things without sorting out each individual entry. The hot
new Cal startup AirBearsnBeds has hired you to create an algorithm to help them place their bear customers
in the best possible beds to improve their experience. Now, a little known fact about bears is that they are
very, very picky about their bed sizes: they do not like their beds too big or too little - they like them just
right. Bears are also sensitive creatures who don’t like being compared to other bears, but they are perfectly
fine with trying out beds.

The Problem:

• Inputs:
‣ A list of Bears with unique but unknown sizes
‣ A list of Beds with unique but unknown sizes
‣ Note: these two lists are not necessarily in the same order

• Output: a list of Bears and a list of Beds such that the ith Bear is the same size as the ith Bed

• Constraints:
‣ Bears can only be compared to Beds and we can get feedback on if the Bear is too large, too small, or

just right for it.
‣ Your algorithm should run in 𝑂(𝑁 log𝑁) time on average

Solution:

Our solution will modify quicksort. Let’s begin by choosing a pivot from the Bears list. To avoid quicksort’s
worst case behavior on a sorted array, we will choose a random Bear as the pivot. Next we will partition
the Beds into three groups — those less than, equal to, and greater than the pivot Bear. Next, we will
select a pivot from the Beds list. This is very important — our pivot Bed will be the Bed that is equal to
the pivot Bear. Given that the Beds and Bears have unique sizes, we know that exactly one Bed will be
equal to the pivot Bear. Next we will partition the Bears into three groups — those less than, equal to,
and greater than the pivot Bed.

Next, we will “match” the pivot Bear with the pivot Bed by adding them to the Bears and Beds lists at the
same index, which is as easy as just adding to the end. Finally, in the same fashion as quicksort, we will
have two recursive calls. The first recursive call will contain the Beds and Bears that are less than their
respective pivots. The second recursive call will contain the Beds and Bears that are greater than their
respective pivots.

Here is a video walkthrough of the solutions as well.

https://youtu.be/EF3_vcXADfc
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