
CS 61B Disjoint Sets, ADTs, BSTs
Spring 2025 Exam-Level 06: March 03, 2025

1 Disjoint Sets
For each of the arrays below, write whether this could be the array representation of a weighted quick union
with path compression and explain your reasoning. Break ties by choosing the smaller integer to be
the root.

 i: 0 1 2 3 4 5 6 7 8 9
 --
A. a[i]: 1 2 3 0 1 1 1 4 4 5
B. a[i]: 9 0 0 0 0 0 9 9 9 -10
C. a[i]: 1 2 3 4 5 6 7 8 9 -10
D. a[i]: -10 0 0 0 0 1 1 1 6 2
E. a[i]: -10 0 0 0 0 1 1 1 6 8
F. a[i]: -7 0 0 1 1 3 3 -3 7 7

Solution:

There are three criteria here that invalidate a representation:
• If there is a cycle in the parent-link.
• For each parent-child link, the tree rooted at the parent is smaller than the tree rooted at the child

before the link (you would have merged the other way around).
• The height of the tree is greater than log2 𝑛, where 𝑛 is the number of elements.

Therefore, we have the following verdicts.
A. Impossible: has a cycle 0-1, 1-2, 2-3, and 3-0 in the parent-link representation.
B. Impossible: the nodes 1, 2, 3, 4, and 5 must link to 0 when 0 is a root; hence, 0 would not link to 9
because 0 is the root of the larger tree.
C. Impossible: tree rooted at 9 has height 9 > log2 10.
D. Possible: 8-6, 7-1, 6-1, 5-1, 9-2, 3-0, 4-0, 2-0, 1-0.
E. Impossible: tree rooted at 0 has height 4 > log2 10.
F. Impossible: tree rooted at 0 has height 3 > log2 7.

2 Disjoint Sets, ADTs, BSTs

2 Asymptotics of Weighted Quick Unions
Note: for all big Ω and big 𝑂 bounds, give the tightest bound possible.

(a) Suppose we have a Weighted Quick Union (WQU) without path compression with N elements.

1. What is the runtime, in big Ω and big 𝑂, of isConnected?

Ω(______), 𝑂(______)
2. What is the runtime, in big Ω and big 𝑂, of connect?

Ω(______), 𝑂(______)

1. Ω(1), 𝑂(log(𝑁))
2. Ω(1), 𝑂(log(𝑁))

In the best-case, if we’re checking if a and b are connected, a is the root, and b is a node directly below the
root. This means we only have to traverse one edge of the tree, which is constant time. In the worst-case,
we have to traverse the entire height of the tree, and Weighted Quick Union gives us a worst-case height
of log𝑁 , hence the upper-bound of 𝑂(log𝑁). Similar logic applies to the connect method.

(b) Suppose we add the method addToWQU to a WQU without path compression. The method takes in a list
of elements and connects them in a random order, stopping when all elements are connected. Assume
that all the elements are disconnected before the method call.

void addToWQU(int[] elements) {
 int[][] pairs = pairs(elements);
 for (int[] pair: pairs) {
 if (size() == elements.length) {
 return;
 }
 connect(pair[0], pair[1]);
 }
}

The pairs method takes in a list of elements and generates all possible pairs of elements in a random
order. For example, pairs([1, 2, 3]) might return [[1, 3], [2, 3], [1, 2]] or [[1, 2], [1, 3],
[2, 3]].

The size method calculates the size of the largest component in the WQU.

Assume that pairs and size run in constant time.

What is the runtime of addToWQU in big Ω and big 𝑂?

Ω(______), 𝑂(______)

Hint: Consider the number of calls to connect in the best case and worst case. Then, consider the best/
worst case time complexity for one call to connect.

Disjoint Sets, ADTs, BSTs 3

Ω(𝑁), 𝑂(𝑁2 log(𝑁))
Note that the if-statement terminates the method when the disjoint set becomes fully connected. The best
case occurs when there is a sequence of pairs such that each connect() operation takes constant time and the
tree becomes connected as quickly as possible. This will happen if we have a sequence (0, 1), (0, 2),…, (0,𝑁 −
1), which consists of 𝑁 − 1 operations each taking constant time (ie. the best case for connect from part
a). Note that long running-times occur when an element (e.g. 0) is not connected for many operations, and
in the worst-case, 0 is not connected until the last N operations. This results in a tree of height log𝑁 and
requires up to 𝑁2 −𝑁 + 1 iterations.

(c) Let us define a matching size connection as connecting two components in a WQU of equal size.
For instance, suppose we have two trees, one with values 1 and 2, and another with the values 3 and 4.
Calling connect(1, 4) is a matching size connection since both trees have 2 elements.

What is the minimum and maximum number of matching size connections that can occur after
executing addToWQU? Assume N, i.e. elements.length, is a power of two. Your answers should be exact.

minimum: _____, maximum: _____

minimum: 1, maximum: N - 1
The minimum number occurs for the sequence above, where there is only one matching size connection:
(0, 1). The maximum number is a bit more tricky, but occurs if we pairwise-connect the elements together,
then pairwise connect those, and so on. An example for N=8 elements is as follows: (0, 1), (2, 3), (4, 5),
(6, 7), (0, 2), (4, 6), (0, 4). In general, there are 𝑁2 matching-size connections of size 1, 𝑁4 matching-size
connections of size 2, and so on, up until one matching-size connection of size 𝑁2 . This is the sum 𝑁2 + 𝑁

4 +
𝑁
8 +…+ 2 + 1, which simplifies to 𝑁 − 1.

4 Disjoint Sets, ADTs, BSTs

3 Is This a BST?
In this setup, assume a BST (Binary Search Tree) has a key (the value of the tree root represented as
an int) and pointers to two other child BSTs, left and right. Additionally, assume that key is between
Integer.MIN_VALUE and Integer.MAX_VALUE non-inclusive.

(a) The following code should check if a given binary tree is a BST. However, for some trees, it returns the
wrong answer. Give an example of a binary tree for which brokenIsBST fails.

public static boolean brokenIsBST(BST tree) {
 if (tree == null) {
 return true;
 } else if (tree.left != null && tree.left.key >= tree.key) {
 return false;
 } else if (tree.right != null && tree.right.key <= tree.key) {
 return false;
 } else {
 return brokenIsBST(tree.left) && brokenIsBST(tree.right);
 }
}

Here is an example of a binary tree for which brokenIsBST fails:

 10
 / \
 5 15
 / \
 3 12

The method fails for some binary trees that are not BSTs because it only checks that the value at a node
is greater than its left child and less than its right child, not that its value is greater than every node in the
left subtree and less than every node in the right subtree. Above is an example of a tree for which it fails.

It is important to note that the method does indeed return true for every binary tree that actually is a
BST (it correctly identifies proper BSTs).

(b) Now, write isBST that fixes the error encountered in part (a).

Hint: You will find Integer.MIN_VALUE and Integer.MAX_VALUE helpful.

Hint 2: You want to somehow store information about the keys from previous layers, not just the direct
parent and children. How do you use the parameters given to do this?

public static boolean isBST(BST T) {
 return isBSTHelper(__);
}

public static boolean isBSTHelper(BST T, int min, int max) {

 if (__) {

 __

Disjoint Sets, ADTs, BSTs 5

 } else if (__) {

 __

 } else {

 __

 }
}

Solution:

public static boolean isBST(BST T) {
 return isBSTHelper(T, Integer.MIN_VALUE, Integer.MAX_VALUE);
}

public static boolean isBSTHelper(BST T, int min, int max) {
 if (T == null) {
 return true;
 } else if (T.key <= min || T.key >= max) {
 return false;
 } else {
 return isBSTHelper(T.left, min, T.key)
 && isBSTHelper(T.right, T.key, max);
 }
}

Explanation:

A BST is a naturally recursive structure, so it makes sense to use a recursive helper to go through the BST
and ensure it is valid. Specifically, our recursive helper will traverse the BST while tracking the minimum
and maximum valid values for subsequent nodes along our current path. We can get these minimum and
maximum values by remembering the key property of BSTs: nodes to the left of our current node are always
less than the current value, and nodes to the right of our current node are always greater than our current
value. So for example, if we encounter a node with value 5, anything to the left must be < 5.

In our base case, an empty BST is always valid. Otherwise, we can check the current node. If it doesn’t fall
within our precomputed min/max, we know this is invalid, and return immediately.

Otherwise, we use the properties of BSTs to bound our subsequent min and max values. If we traverse
to the left, everything must be less than or equal to the current value, so the value of our current node
becomes the new texttt{max} for the tree at T.left. Similar logic applies to the right.

	Disjoint Sets
	Asymptotics of Weighted Quick Unions
	Is This a BST?

