
CS 61B Asymptotics II
Spring 2025 Exam-Level 05: February 24, 2025

1 Finish the Runtimes
Below we see the standard nested for loop, but with missing pieces!

for (int i = 1; i < ______; i = ______) {
 for (int j = 1; j < ______; j = ______) {
 System.out.println("Circle is the best TA");
 }
}

For each part below, some of the blanks will be filled in, and a desired runtime will be given. Fill in the
remaining blanks to achieve the desired runtime! There may be more than one correct answer.

Hint: You may find Math.pow helpful.

(a) Desired runtime: Θ(𝑁2)

for (int i = 1; i < N; i = i + 1) {
 for (int j = 1; j < i; j = ______) {
 System.out.println("This is one is low key hard");
 }
}

Solution:

for (int i = 1; i < N; i = i + 1) {
 for (int j = 1; j < i; j = j + 1) {
 System.out.println("This is one is low key hard");
 }
}

Explanation: Remember the arithmetic series 1 + 2 + 3 + 4 +…+𝑁 = Θ(𝑁2). We get this series by
incrementing 𝑗 by 1 per inner loop.

(b) Desired runtime: Θ(log(𝑁))

for (int i = 1; i < N; i = i * 2) {
 for (int j = 1; j < ______; j = j * 2) {
 System.out.println("This is one is mid key hard");
 }
}

2 Asymptotics II

Solution: Any constant would work here, 2 was chosen arbitrarily.

for (int i = 1; i < N; i = i * 2) {
 for (int j = 1; j < 2; j = j * 2) {
 System.out.println("This is one is mid key hard");
 }
}

Explanation: The outer loop already runs log 𝑛 times, since 𝑖 doubles each time. This means the inner
loop must do constant work (so any constant j < k would work).

(c) Desired runtime: Θ(2𝑁). 2𝑁

𝑁 is a valid answer, could you think of another?

for (int i = 1; i < N; i = i + 1) {
 for (int j = 1; j < ______; j = j + 1) {
 System.out.println("This is one is high key hard");
 }
}

Solution:

for (int i = 1; i < N; i = i + 1) {
 for (int j = 1; j < Math.pow(2, i); j = j + 1) {
 System.out.println("This is one is high key hard");
 }
}

Explanation: Remember the geometric series 1 + 2 + 4 +…+ 2𝑁 = Θ(2𝑁). We notice that 𝑖 increments
by 1 each time, so in order to achieve this 2𝑁 runtime, we must run the inner loop 2𝑖 times per outer loop
iteration.

(d) Desired runtime: Θ(𝑁3)

for (int i = 1; i < ______; i = i * 2) {
 for (int j = 1; j < N * N; j = ______) {
 System.out.println("yikes");
 }
}

for (int i = 1; i < Math.pow(2, N); i = i * 2) {
 for (int j = 1; j < N * N; j = j + 1) {
 System.out.println("yikes");
 }
}

Explanation: One way to get 𝑁3 runtime is to have the outer loop run 𝑁 times, and the inner loop run
𝑁2 times per outer loop iteration. To make the outer loop run 𝑁 times, we need stop after multiplying i
= i * 2 𝑁 times, giving us the condition i < Math.pow(2, N). To make the inner loop run 𝑁2 times, we
can simply increment by 1 each time.

Asymptotics II 3

2 Asymptotics is Fun!
(a) Using the function g defined below, what is the runtime of the following function calls? Write each answer

in terms of N. Feel free to draw out the recursion tree if it helps.

void g(int N, int x) {
 if (N == 0) {
 return;
 }
 for (int i = 1; i <= x; i++) {
 g(N - 1, i);
 }
}

g(N, 1): Θ(____)

g(N, 1): Θ(𝑁)

Explanation: When x is 1, the loop gets executed once and makes a single recursive call to g(N - 1).
The recursion goes g(N), g(N - 1), g(N - 2), and so on. This is a total of N recursive calls, each doing
constant work.

g(N, 2): Θ(____)

g(N, 2): Θ(𝑁2)

Explanation: When x is 2, the loop gets executed twice. This means a call to g(N) makes 2 recursive calls
to g(N - 1, 1) and g(N - 1, 2). The recursion tree looks like this:

From the first part, we know g(..., 1) does linear work. Thus, this is a recursion tree with N levels, and
the total work is (𝑁 − 1) + (𝑁 − 2) + …+ 1 = Θ(𝑁2) work.

(b) Suppose we change line 6 to g(N - 1, x) and change the stopping condition in the for loop to i <=
f(x) where f returns a random number between 1 and x, inclusive. For the following function calls, find
the tightest Ω and big O bounds. Feel free to draw out the recursion tree if it helps.

void g(int N, int x) {
 if (N == 0) {
 return;
 }
 for (int i = 1; i <= f(x); i++) {
 g(N - 1, x);
 }
}

4 Asymptotics II

g(N, 2): Ω(____), 𝑂(____)

g(N, N): Ω(____), 𝑂(____)

g(N, 2): Ω(𝑁), 𝑂(2𝑁)

g(N, N): Ω(𝑁), 𝑂(𝑁𝑁)

Explanation: Suppose f(x) always returns 1. Then, this is the same as case 1 from (a), resulting in a
linear runtime.
On the other hand, suppose f(x) always returns x. Then g(N, x) makes x recursive calls to g(N - 1, x),
each of which makes x recursive calls to g(N - 2, x), and so on, so the recursion tree has 1, x, 𝑥2 … nodes
per level. Outside of the recursion, the function g does x work per node. Thus, the overall work is 𝑥 ∗ 1 +
𝑥 ∗ 𝑥 + 𝑥 ∗ 𝑥2 +…+ 𝑥 ∗ 𝑥𝑁−1 = 𝑥(1 + 𝑥 + 𝑥2 +…+ 𝑥𝑁−1).
Plug in x = 2 to get 2(1 + 2 + 22 +…+ 2𝑁−1) = 𝑂(2𝑁) for our first upper bound. Plug in x = N to get
𝑁(1 + 𝑁 +𝑁2 +…+𝑁𝑁−1) = 𝑂(𝑁𝑁) (ignoring lower-order terms).

Asymptotics II 5

3 Asymptotics Proofs
As a reminder, the formal definitions of Ω, Θ, and 𝑂 are provided below:

Let 𝑓, 𝑔 be real-valued functions. Then:

𝑓(𝑥) ∈ Θ(𝑔(𝑥)) if there exists 𝑎, 𝑏,𝑁0 > 0 such that for all 𝑁 > 𝑁0, |𝑎𝑔(𝑁)| ≤ |𝑓(𝑁)| ≤ |𝑏𝑔(𝑁)|.

𝑓(𝑥) ∈ 𝑂(𝑔(𝑥)) if there exists 𝑏,𝑁0 > 0 such that for all 𝑁 > 𝑁0, |𝑓(𝑁)| ≤ |𝑏𝑔(𝑁)|.

𝑓(𝑥) ∈ Ω(𝑔(𝑥)) if there exists 𝑎,𝑁0 > 0 such that for all 𝑁 > 𝑁0, |𝑎𝑔(𝑁)| ≤ |𝑓(𝑁)|.

Informally, we say that 𝑓(𝑥) ∈ 𝑂(𝑔(𝑥)) approximately means that 𝑓(𝑥) ≤ 𝑔(𝑥), and similarly, 𝑓(𝑥) ∈ Θ(𝑔(𝑥))
means 𝑓(𝑥) = 𝑔(𝑥) and 𝑓(𝑥) ∈ Ω(𝑔(𝑥)) means 𝑓(𝑥) ≥ 𝑔(𝑥). This problem will explore why we can make this
informal statement, by showing that the 𝑂 relation shares many properties with the ≤ relation.

For this problem, let 𝑓 , 𝑔, and ℎ be real-valued functions, and let 𝑥, 𝑦, and 𝑧 be real numbers. You won’t
be expected to write full proofs on exams, but this thinking style will be helpful on exams and especially in
later classes.

(a) If 𝑥 ≤ 𝑦, then 𝑦 ≥ 𝑥. Show that if 𝑓(𝑥) ∈ 𝑂(𝑔(𝑥)), then 𝑔(𝑥) ∈ Ω(𝑓(𝑥))

Solution: Assume 𝑥 is large enough that the inequalities from all 𝑂 bounds hold. From the definitions
above we know that there exists 𝑏 > 0 such that |𝑓(𝑥)| ≤ |𝑏𝑔(𝑥)|. Dividing both sides of the inequality by 𝑏,
we get |1𝑏𝑓(𝑥)| ≤ |𝑔(𝑥)|. If we define 𝑎 to be 1𝑏 , this is the definition of 𝑔(𝑥) ∈ Ω(𝑓(𝑥)). Therefore if 𝑓(𝑥) ∈
𝑂(𝑔(𝑥)), 𝑔(𝑥) ∈ Ω(𝑓(𝑥)).

(b) If 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥, then 𝑥 = 𝑦. Show that if 𝑓(𝑥) ∈ 𝑂(𝑔(𝑥)) and 𝑔(𝑥) ∈ 𝑂(𝑓(𝑥)), then 𝑓(𝑥) ∈ Θ(𝑔(𝑥))

Solution: Assume 𝑥 is large enough that the inequalities from all 𝑂 bounds hold. Since 𝑓(𝑥) ∈ 𝑂(𝑔(𝑥)),
there must exist a value 𝑏 > 0 such that |𝑓(𝑥)| ≤ |𝑏𝑔(𝑥)|. Additionally, since 𝑔(𝑥) ∈ 𝑂(𝑓(𝑥)), there must
exist a value 𝑏′ > 0 such that |𝑔(𝑥)| ≤ |𝑏′𝑓(𝑥)|. Dividing both sides of the inequality by 𝑏′, we get | 1𝑏′𝑔(𝑥)| ≤
|𝑓(𝑥)|. We then join the two inequalities on the shared |𝑓(𝑥)| term to get | 1𝑏′𝑔(𝑥)| ≤ |𝑓(𝑥)| ≤ |𝑏𝑔(𝑥)|. If we
define 𝑎 to be 1

𝑏′ , this is the definition of 𝑓(𝑥) ∈ Θ(𝑔(𝑥)).

(c) For any real number, 𝑥 ≤ 𝑥. Show that for any function, 𝑓(𝑥) ∈ 𝑂(𝑓(𝑥)).

Solution: Assume 𝑥 is large enough that the inequalities from all 𝑂 bounds hold. From the definition of 𝑂,
𝑓(𝑥) ∈ 𝑂(𝑔(𝑥)) if there exists 𝑏,𝑁0 > 0 such that |𝑓(𝑥)| ≤ |𝑏𝑔(𝑥)| for all 𝑥 > 𝑁0. Let 𝑔(𝑥) = 𝑓(𝑥). We see
that for |𝑏| ≥ 1, |𝑓(𝑥)| ≤ |𝑏𝑓(𝑥)| holds true regardless of the value of 𝑥. Since we were able to find 𝑏,𝑁0 >
0 such that the inequality was true, 𝑓(𝑥) ∈ 𝑂(𝑓(𝑥)).

(d) If 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧, then 𝑥 ≤ 𝑧. Show that if 𝑓(𝑥) ∈ 𝑂(𝑔(𝑥)) and 𝑔(𝑥) ∈ 𝑂(ℎ(𝑥)), then 𝑓(𝑥) ∈ 𝑂(ℎ(𝑥))

Solution: Assume 𝑥 is large enough that the inequalities from all 𝑂 bounds hold. If 𝑓(𝑥) ∈ 𝑂(𝑔(𝑥)),
there exists 𝑏 > 0 such that |𝑓(𝑥) ≤ |𝑏𝑔(𝑥)|. If 𝑔(𝑥) ∈ 𝑂(ℎ(𝑥)), there exists 𝑏′ such that |𝑔(𝑥) ≤ |𝑏′ℎ(𝑥)|.
Substituting the second inequality into the first, we get that |𝑓(𝑥) ≤ |𝑏𝑏′ℎ(𝑥)|. This is the definition of
𝑓(𝑥) ∈ 𝑂(ℎ(𝑥)).

(e) For any pair of real numbers 𝑥 and 𝑦, either 𝑥 < 𝑦, 𝑥 = 𝑦, or 𝑥 > 𝑦. Show that this is NOT a property
of 𝑂; that is, find functions 𝑓 and 𝑔 such that 𝑓(𝑥) ∉ 𝑂(𝑔(𝑥)) and 𝑔(𝑥) ∉ 𝑂(𝑓(𝑥)).

Solution: Any pair of functions that cannot consistently upper-bound each other would work here. An
example of such a pair is 𝑥 ∗ (1 + sin(𝑥)) and 𝑥 ∗ (1 + cos(𝑥)).

	Finish the Runtimes
	Asymptotics is Fun!
	Asymptotics Proofs

