
CS 61B Iterators, Asymptotics
Spring 2025 Exam-Level 04: February 17, 2025

1 Iterator of Iterators
Implement an IteratorOfIterators which takes in a List of Iterators of Integers as an argument. The
first call to next() should return the first item from the first iterator in the list. The second call should return
the first item from the second iterator in the list. If the list contained n iterators, the n+1th time that we call
next(), we would return the second item of the first iterator in the list.

Note that if an iterator is empty in this process, we continue to the next iterator. Then, once all the iterators
are empty, hasNext should return false. For example, if we had 3 Iterators A, B, and C such that A
contained the values [1, 3, 4, 5], B was empty, and C contained the values [2], calls to next() for our
IteratorOfIterators would return [1, 2, 3, 4, 5].

public class IteratorOfIterators ___ {
 private List<Iterator<Integer>> iterators;
 private int curr;
 public IteratorOfIterators(List<Iterator<Integer>> a) {
 iterators = new LinkedList<>();
 for (___) {
 if (___) {
 __;
 }
 }
 curr = 0;
 }
 @Override
 public boolean hasNext() {
 return ___;
 }
 @Override
 public Integer next() {
 if (!hasNext()) { throw new NoSuchElementException(); }
 Iterator<Integer> currIterator = ___;
 int result = ___;
 if (___) {
 ___;
 if (iterators.isEmpty()) {
 ___;
 }
 } else {
 curr = ___;
 }
 return result;
 }
}

2 Iterators, Asymptotics

Solution:

public class IteratorOfIterators implements Iterator<Integer> {
 private List<Iterator<Integer>> iterators;
 private int curr;

 public IteratorOfIterators(List<Iterator<Integer>> a) {
 iterators = new LinkedList<>();
 for (Iterator<Integer> iterator : a) {
 if (iterator.hasNext()) {
 iterators.add(iterator);
 }
 }
 curr = 0;
 }

 @Override
 public boolean hasNext() {
 return !iterators.isEmpty();
 }

 @Override
 public Integer next() {
 if (!hasNext()) {
 throw new NoSuchElementException();
 }
 Iterator<Integer> currIterator = iterators.get(curr);
 int result = iterators.get(curr).next();
 if (!currIterator.hasNext()) {
 iterators.remove(curr);
 if (curr >= iterators.size()) {
 curr = 0;
 }
 } else {
 curr = (curr + 1) % iterators.size();
 }
 return result;
 }
}

For this problem, we use the instance variable iterators to store all the iterators that still has elements.
We use curr to indicate the next iterator to get the next element from. Therefore, in the constructor, we
initialize iterators by iterating through the input list of iterators and adding the iterators that are not
empty. We then initialize curr to 0. For the hasNext() method, we can test whether our list iterators is
empty. For the next() method, we first check if there are any elements left to iterate through (throwing an
error if we do not have). If there are, we get the current iterator and the next element from that iterator.
If the iterator is empty, we remove it from the list of iterators. Otherwise, we increment curr to the next
iterator. Notice that we do not increment curr if we remove an iterator from the list, as all the indices of
the following iterators will shift by 1, and next iterator will take its place.

Iterators, Asymptotics 3

2 Asymptotics
(a) Say we have a function findMax that iterates through an unsorted int array one time and returns the

maximum element found in that array. Give the tightest lower and upper bounds (Ω(⋅) and 𝑂(⋅)) of
findMax in terms of N, the length of the array. Is it possible to define a Θ(⋅) bound for findMax?

Solution: Lower bound: Ω(𝑁), Upper bound: 𝑂(𝑁)

Because the array is unsorted, we don’t know where the max will be, so we have to iterate through the
entire array to ensure that we find the true max. Therefore, we know that we can never go faster than
linear time with respect to the length of the array. Since the function is both lower and upper bounded by
𝑁 , we can say that the function is theta-bounded by 𝑁 as well (Θ(𝑁)).

(b) Give the worst case and best case runtime in terms of 𝑀 and 𝑁 . Assume ping runs in Θ(1) and returns
an int.

for (int i = N; i > 0; i--) {
 for (int j = 0; j <= M; j++) {
 if (ping(i, j) > 64) { break; }
 }
}

Solution: Worst: Θ(𝑀𝑁), Best: Θ(𝑁) We repeat the outer loop 𝑁 times, no matter what. For the inner
loop, the amount of times we repeat it depends on the result of ping. In the best case, it returns true
immediately, such that we’ll only ever look at the inner loop once and then break the inner loop. In the worst
case, ping is always false and we complete the inner loop M times for every value of N in the outer loop.

(c) Below we have a function that returns true if every int has a duplicate in the array, and false if there
is any unique int in the array. Assume sort(array) is in Θ(𝑁 log𝑁) and returns array sorted.

public static boolean noUniques(int[] array) {
 array = sort(array);
 int N = array.length;
 for (int i = 0; i < N; i += 1) {
 boolean hasDuplicate = false;
 for (int j = 0; j < N; j += 1) {
 if (i != j && array[i] == array[j]) {
 hasDuplicate = true;
 }
 }
 if (!hasDuplicate) return false;
 }
 return true;
}

Give the worst case and best case runtime where 𝑁 = array.length.

4 Iterators, Asymptotics

Notice that we call sort at the beginning of the function, which we are told runs in Θ(𝑁 log𝑁).

First, we consider the best case. We notice that if hasDuplicate is false after the inner loop (i.e. !
hasDuplicate has truth value true) we can exit the for loop early via the return statement on line
11. Thus, the best case is when we never set hasDuplicate to be true during the first time we run the
inner loop. In this case, we can return after only looping through the array once, giving us Θ(𝑁 log𝑁 +
𝑁) = Θ(𝑁 log𝑁).

For the worst case, we notice that if hasDuplicate is always set to true by the inner loop, we never return
on line 11. Thus, we consider the worst case where hasDuplicate is always set to true in every loop,
forcing us to have to loop fully through both the inner and outer loop. One such input is an array of all
the same integer! Since we have to fully loop through both loops, our worst-case runtime is Θ(𝑁 log𝑁 +
𝑁2) = Θ(𝑁2).

	Iterator of Iterators
	Asymptotics

