CS 618 [nheritance, Comparators, Generic Functions
Spring 2025 Exam-Level 03: Fe]aruary 10, 2025

| Default

Suppose we have a MyStack interface that we want to implement. We want to add two default methods to
the interface: insesrtAtBottom and f1ip. Fill in these methods in the code below.

public interface MyStack<E> {
void push(E element); // adds an element to the top of the stack

E popQ; // removes and returns the top element of the stack
boolean isEmpty(); // returns true if the stack is empty
int size(); // returns the number of elements in the stack

// inserts the item at the bottom of the stack using push, pop, isEmpty, and size
private void insertAtBottom(E item) {

// flips the stack upside down (hint: use insertAtBottom)
default void flip() {

2 Inheritance, Comparators, Generic Functions

2 MetaComparison
Given IntList x, an IntList y, and a Comparator<Integer> c, the IntListMetaComparator performs a
comparison between x and y.

Specifically, the IntListMetaComparator performs a pairwise comparison of all the items in x and y. If the
lists are of different lengths, the extra items in the longer list are ignored. Let o be the number of items in
x that are less than the corresponding item in y according to c. Let 8 be the number of items in x that are
greater than the corresponding item in y according to c. If @ > 3, then x is considered less than y. If o =
B, then x is considered equal to y. If @ < 3, then x is considered greater than y. For example:

Comparator<Integer> c = new FiveCountComparator(); //compares # of fives
IntList x [65, 70, 90, 115, 5]; //e.g. 55 has 2 fives
IntList y = [150, 35, 215, 25];

IntListMetaComparator ilmc = new IntListMetaComparator(c);

ilmc.compare(x, y); // returns negative number

For the example above, according to the FiveCountComparator, we have that 55 > 150, 70 < 35, 90 < 215,
and 115 = 25. This yields « = 2 and § =1, and thus ilmc.compare will return a negative number. Fill in
the code below:

public class IntListMetaComparator implements Comparator<IntList> {

public IntListMetaComparator (Comparator<Integer> givenC) {

/* Returns negative number if more items in x are less,
Returns positive number if more items in x are greater.
If one list is longer than the other, extra items are ignored. */

public int compare(IntList x, IntList y) {

if (o) N o
, - S — e
if (_ — N SRR |
return ____________________________ ;
} else if (__ —— .)L
return __ —— _— P ———
} else {
return __________________________________ ;
}

Inheritance, Comparators, Generic Functions 3

3 Inheritance Syntax

Suppose we have the classes below:

public class ComparatorTester {
public static void main(String[] args) {
String[] strings = new String[] {"horse", "cat", "dogs"};

System.out.println(Maximizer.max(strings, new LengthComparator()));

3

public class LengthComparator implements Comparator<String> {
@0verride
public int compare(String a, String b) {
return a.length() - b.length();

3

public class Maximizer {
/[*%

* Returns the maximum element in items, according to the given Comparator.
*/
public static <T> T max(T[] items, Comparator<T> c) {

int cmp = c.compare(items[i], items[maxDex]);

X

(a) Suppose we omit the compare method from LengthComparator. Which of the following will fail to
compile?

O ComparatorTester. java
O LengthComparator. java
O Maximizer. java

O Comparator. java

(b) Suppose we omit implements Comparator<String> in LengthComparator. Which file will fail to
compile?

O ComparatorTester. java
O LengthComparator. java
O Maximizer. java

O Comparator. java

4 Inheritance, Comparators, Generic Functions

(¢) Suppose we removed @0verride. What are the implications?

(d) Suppose we changed where the type parameter appears so that the code in Maximizer looks like:

public class Maximizer<T> {

public T max(T[] items, Comparator<T> c) {

What would change about the way we use Maximizer?

(e) Suppose we changed the method signature for max to read public static String max(String[]
items, Comparator<String> c). Would the code shown still work?

	Default
	MetaComparison
	Inheritance Syntax

